行为型模式
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。
行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。
行为型模式是 GoF 设计模式中最为庞大的一类,它包含以下 11 种模式。
模板方法(Template Method)模式:定义一个操作中的算法骨架,将算法的一些步骤延迟到子类中,使得子类在可以不改变该算法结构的情况下重定义该算法的某些特定步骤。
策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的客户。
命令(Command)模式:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。
职责链(Chain of Responsibility)模式:把请求从链中的一个对象传到下一个对象,直到请求被响应为止。通过这种方式去除对象之间的耦合。
状态(State)模式:允许一个对象在其内部状态发生改变时改变其行为能力。
观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度,使原有对象之间不必相互了解。
迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素有多个访问者对象访问。
备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。
策略模式实现
策略(Strategy)模式的定义:该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算法进行管理。
策略模式是准备一组算法,并将这组算法封装到一系列的策略类里面,作为一个抽象策略类的子类。策略模式的重心不是如何实现算法,而是如何组织这些算法,从而让程序结构更加灵活,具有更好的维护性和扩展性,现在我们来分析其基本结构和实现方法。
策略模式的主要角色如下。
抽象策略(Strategy)类:定义了一个公共接口,各种不同的算法以不同的方式实现这个接口,环境角色使用这个接口调用不同的算法,一般使用接口或抽象类实现。
具体策略(Concrete Strategy)类:实现了抽象策略定义的接口,提供具体的算法实现。
环境(Context)类:持有一个策略类的引用,最终给客户端调用。
public class StrategyPattern {
public static void main(String[] args) {
Context c = new Context();
Strategy s = new ConcreteStrategyA();
c.setStrategy(s);
c.strategyMethod();
System.out.println("-----------------");
s = new ConcreteStrategyB();
c.setStrategy(s);
c.strategyMethod();
}
}
//抽象策略类
interface Strategy {
public void strategyMethod(); //策略方法
}
//具体策略类A
class ConcreteStrategyA implements Strategy {
public void strategyMethod() {
System.out.println("具体策略A的策略方法被访问!");
}
}
//具体策略类B
class ConcreteStrategyB implements Strategy {
public void strategyMethod() {
System.out.println("具体策略B的策略方法被访问!");
}
}
//环境类
class Context {
private Strategy strategy;
public Strategy getStrategy() {
return strategy;
}
public void setStrategy(Strategy strategy) {
this.strategy = strategy;
}
public void strategyMethod() {
strategy.strategyMethod();
}
}
观察者模式实现
在现实世界中,许多对象并不是独立存在的,其中一个对象的行为发生改变可能会导致一个或者多个其他对象的行为也发生改变。例如,某种商品的物价上涨时会导致部分商家高兴,而消费者伤心;还有,当我们开车到交叉路口时,遇到红灯会停,遇到绿灯会行。这样的例子还有很多,例如,股票价格与股民、微信公众号与微信用户、气象局的天气预报与听众、小偷与警察等。
实现观察者模式时要注意具体目标对象和具体观察者对象之间不能直接调用,否则将使两者之间紧密耦合起来,这违反了面向对象的设计原则。
观察者模式的主要角色如下。
抽象主题(Subject)角色:也叫抽象目标类,它提供了一个用于保存观察者对象的聚集类和增加、删除观察者对象的方法,以及通知所有观察者的抽象方法。
具体主题(Concrete Subject)角色:也叫具体目标类,它实现抽象目标中的通知方法,当具体主题的内部状态发生改变时,通知所有注册过的观察者对象。
抽象观察者(Observer)角色:它是一个抽象类或接口,它包含了一个更新自己的抽象方法,当接到具体主题的更改通知时被调用。
具体观察者(Concrete Observer)角色:实现抽象观察者中定义的抽象方法,以便在得到目标的更改通知时更新自身的状态。
package net.biancheng.c.observer;
import java.util.*;
public class ObserverPattern {
public static void main(String[] args) {
Subject subject = new ConcreteSubject();
Observer obs1 = new ConcreteObserver1();
Observer obs2 = new ConcreteObserver2();
subject.add(obs1);
subject.add(obs2);
subject.notifyObserver();
}
}
//抽象目标
abstract class Subject {
protected List<Observer> observers = new ArrayList<Observer>();
//增加观察者方法
public void add(Observer observer) {
observers.add(observer);
}
//删除观察者方法
public void remove(Observer observer) {
observers.remove(observer);
}
public abstract void notifyObserver(); //通知观察者方法
}
//具体目标
class ConcreteSubject extends Subject {
public void notifyObserver() {
System.out.println("具体目标发生改变...");
System.out.println("--------------");
for (Object obs : observers) {
((Observer) obs).response();
}
}
}
//抽象观察者
interface Observer {
void response(); //反应
}
//具体观察者1
class ConcreteObserver1 implements Observer {
public void response() {
System.out.println("具体观察者1作出反应!");
}
}
//具体观察者1
class ConcreteObserver2 implements Observer {
public void response() {
System.out.println("具体观察者2作出反应!");
}
}